If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7v^2+28v-12=0
a = 7; b = 28; c = -12;
Δ = b2-4ac
Δ = 282-4·7·(-12)
Δ = 1120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1120}=\sqrt{16*70}=\sqrt{16}*\sqrt{70}=4\sqrt{70}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4\sqrt{70}}{2*7}=\frac{-28-4\sqrt{70}}{14} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4\sqrt{70}}{2*7}=\frac{-28+4\sqrt{70}}{14} $
| A52x+52=52x-78 | | 8r9−15r=27 | | B=x+2 | | x2−8x−84=0 | | k/11+5=-3 | | 33+12x-12=21 | | 1+d6=1 | | -5x-3/4=-7 | | 45=(a-32)÷1.8 | | -8(b-8)=-16 | | y=1146+4y | | 4(3x+2)=2(x−6) | | 4x+12-6x=13 | | (1/4)8y-4)=2(2.5y+7) | | -6(v-8)-5=37 | | 159=-3+2a^2 | | 1.8(a-32)=45 | | 3.00x=2.00 | | 5(x+5)=2x+1 | | 4=3v-11 | | 8x-17=2x+13 | | -3r+5=5 | | 7(y+6)=8(y+4) | | -14=7(b-4) | | 8.6+0.9c=14.9 | | -(-3x-7)=6 | | 10x+4217=23x+6011 | | 1m-4=5 | | 2x+x+3x+40=180 | | 2b-3-4b-2=-b | | -7+v4=-1 | | 2x+9≤27= |